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Abstract A new application using approximate similarity (AS) measurements to
the study of chemical properties of drugs is presented in this paper. A quantita-
tive structure—activity relationship (QSAR) model for predicting spirosuccinimide
fused tetrahydropyrrolo[1,2-a]pyrazine (SPPP) compounds activity as inhibitors of
the aldose reductase (AR) enzyme was developed. This enzyme is involved in the
transformation of glucose into sorbitol, which causes several diseases related to dia-
betes mellitus. AS matrices were built based on isomorphic and nonisomorphic data
fusion and they were employed as representation space of SPPP data set for the de-
velopment of QSAR model. For this purpose, isomorphism among all the pairs of
molecules of the studied data set was extracted and Wiener and HyperWiener descrip-
tors were used for describing the isomorphic and nonisomorphic subgraphs. Full cross
validation (Q2 = 0.92, Standard Error in Cross Validation = 0.10) was the strategy
employed to build and validate accurate predictive similarity spaces.
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1 Introduction

Different studies have proven that the spirosuccinimide fused tetrahydropyrrolo[1,2-
a]pyrazine (SPPP) derivatives are potent inhibitors of the aldose reductase enzyme
(AR), which is an enzyme involved in the first step of the polyol pathway reducing
the glucose in blood into sorbitol [1,2]. The excess of intracellular sorbitol is one
of the reasons for retinopathy, nephropathy, cataracts, etc., related to the diabetes
mellitus disease [3–6]. Therefore, the design of new AR inhibitors and the study of
their capacity are nowadays work topics focused on combating the hyperglycemia
symptoms observed in the diabetes mellitus. This interest is also justified by the fact
of obtaining a wide effect spectrum for the “in vivo” tests inhibitory capacity [7–17].
Therefore, the use of new drug-design methodologies showing minimal environment
damages is pursued.

The establishment and validation of mathematical equations which match pieces of
structural information and compound behavior is pursued in several scientific fields and
recommended by several international organizations [18]. Thus, quantitative structure-
activity relationship (QSAR) approaches have attracted the attention of pharmaceutical
industries due to the modeling and predictive ability achieved by QSAR models, which
permit to assist the drug design via-computer, to develop screening chemical databases
methods, to predict, within a confidence interval, the behavior of new compounds, etc.
[19,20]

Regarding SPPP compounds, QSAR models have been recently proposed using 3D
optimized structures [21,22]. Due to the enantioselectivity shown by the AR enzyme,
different models were built using R-descriptors, S-descriptors and the arithmetic mean
of the descriptors resulting from each SPPP enantiomer structure (racemic descriptors).
These models achieved good correlations for the inhibition activity by means of five
descriptors: (a) partial negative surface area (PNSA1), (b) the noncommon overlap
steric volume (VNCOS), (c) the z-component dipole moment (µZ ), (d) the aqueous
desolvation free energy of the molecule (FH2O), and (e) the length of the molecule in the
z-direction. These descriptors included conformational, electronic, spatial, structural,
thermodynamic and molecular shape analysis calculations. With these descriptors,
Won et al. [21,22], proposed their SPPP approaches using genetic algorithms—linear
and quadratic terms of the descriptors were considered in the independent variable set.

As Fig. 1 shows, the SPPP compounds studied in reference 22 present a com-
mon substructure (compound 1) which practically corresponds to the 90–98% of the
whole molecule. In spite of this structural similarity, the nature and position of the
fragments that do not belong to the common substructure are key for the inhibition
parameter (pI C50 = −logI C50) variation—from 0.201 of compound 1 to 1.638 of
the compound 20.

Molecular fragments have been recently studied for developing QSAR models
[23,24]. Thus, studies based on data set molecular fragmentation and compound clas-
sification as a function of the fragments characteristics have been carried out. The point
was to find behavioral patterns for the different fragments regarding their properties.

Other QSAR approaches based on fragment characteristics have been developed
using the approximate similarity (AS) [25–27]. Derived from chemical graphs, AS
is a similarity measurement which merges, for each pair of the data set elements,
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Fig. 1 Structures and inhibitory capacities of the 22 spirosuccinimide fused tetrahydropyrrolo[1,2-a]
pyrazine (SPPP) compounds studied

substructure similarity and dissimilarity as follows:

ASA,B = f (SA,B, �A,B, w�) (1)

• Extracting the isomorphism between all pair of the data set graphs, and calculating
a similarity measure based on the computed isomorphism (SA,B).

• Using one or several topological descriptors in order to obtain distance measure-
ments that characterize the noncommon fragments of the extracted isomorphism
(�A,B).

• Considering an adjustment factor (w�) which weighs up the influence of the noni-
somorphic fragments on the approximate similarity value.

• And combining all the above parameters in a similarity metric using a function f().

Approximate similarity measurements are simple and flexible and their calculation
does not require high computational resources since both isomorphism extraction and
topological descriptor calculation over the isomorphic and nonisomorphic fragments
are fast processes [26].

So, an N by N AS matrix can be obtained and employed as a predictive space—
N is the number of elements of the data set. QSAR models based on AS matrices
have been previously built for different families of compounds (biphenyls, steroids,
benzodiazepines, etc.) [25–27], and high correlations were obtained.

The use of both AS matrices and partial least squares regression (PLSR) for esta-
blishing structure-activity relationships between 22 SPPP derivatives and their inhi-
bitor capacity has been proposed. Regarding previous works, the aim was to develop
QSAR approaches characterized by simplicity, fastness and robustness, thus suppor-
ting the approximate similarity concept validation. Section 2 describes the chemical
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structures and their activities and, besides, the AS methodology employed for gene-
rating the structural descriptors. The statistical characterization of the models, and
so, the evaluation of the predictive ability is given in Sect. 3. Finally, conclusions are
exposed.

2 Materials and methods

2.1 Chemical structures and biological data

Figure 1 shows the SPPP derivatives and their inhibitor capacities (pI C50). These
activity values were extracted from the most recent SPPP model proposed by Won et
al. [22], which, and in turn, uses the assays carried out by Negoro et al. [28] for mea-
suring the 50% inhibition of the porcine lens AR activity—the 50% sorbitol decrease
regarding to the amount accumulated in the sciatic nerve of diabetic rats.

Two dimensional structures of the SPPP derivatives built using Marvin software
[29] were employed for the descriptor generation. Thus, only the type of atoms and
bonds were required for developing the QSAR models, this way avoiding 3D geometry
optimization methods.

2.2 Isomorphic and nonisomorphic chemical information

For the data set of compounds above described, isomorphism between all pairs of
molecular graphs was extracted using an algorithm developed by the authors [30]. In
this way, information of the Maximum Common Substructure (MCS) and the Non-
Isomorphic Fragments (NIF) was stored in two 22 by 22 matrices, namely:

• A symmetric MCS matrix where each element (i, j) stores the MCS value of the
isomorphism between the molecules iand j ; the matrix elements (i, i) correspond
to the structure of the molecule i .

• A nonsymmetric NIF matrix where each element (i, j) stores the value of the noniso-
morphic fragments of the molecular graph i calculated considering the isomorphism
extracted from the molecules i and j matching. Therefore, diagonal elements (i, i)
are null.

The information of these isomorphic and nonisomorphic substructures was obtained
by means of topological invariants, which describe chemical information from graph
representations (isomorphic and nonisomorphic subgraphs). So, two matrices, MCS
and NIF, storing the information about similarity and dissimilarity of the data set
compounds were built and employed as the basis of the subsequent generation of AS
values, which constitute the QSAR model input.

2.3 Approximate similarity measurements

As stated above, isomorphic and nonisomorphic data were fused in order to generate
more efficient similarity spaces. This fact was achieved combining similarities of the
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common substructures and distances of the noncommon subgraphs, as follows:

ASA,B = SI
A,B −

(
NIFA

T D(A)
− NIFB

T D(B)

)

×
⎛
⎝1 −

√
[T D(NIFA) − T D(NIFP

A)]2 + [T D(NIFB) − T D(NIFP
B )]2

√[T D(A) − T D(AP )]2 + [T D(B) − T D(B P )]2

⎞
⎠

(2)

Expression (2) shows three components which constitute the AS measurement. The
first term consists of the invariant-based similarity value SI

A,B obtained using one of
the established similarity indexes, for instance, the cosine index computed as follows:

SI
A,B = T D(MC SA,B)√

T D(A) × T D(B)
(3)

where T D(MC SA,B), TD(A) and TD(B) are the topological invariants of the maximum
common substructure, and the A and B compounds, respectively. In a previous work
[27], the fact of depicting finer chemical information by employing invariant-based
similarity values has been proven. Expression (3) surpasses the role of constitutional
data by taking into account molecular characteristics (e.g., number and nature of
intramolecular bonds) instead of the number of vertexes and edges.

Although the invariant-based similarity shows a more appropriate behavior than that
shown by the constitutional similarity, nonisomorphic information is required in order
to achieve predictive AS values. Thus, the second and third terms of Expression (2)
add the contribution of the nonisomorphic fragments by means of a product between a
nonisomorphic distance value (�A,B) and a factor (w�) which weighs up the distance
contribution, as shown in Expression (4) and (5), respectively.

�A,B =
(

NIFA

T D(A)
− NIFB

T D(B)

)
(4)

w� =
⎛
⎝1 −

√
[T D(NIFA) − T D(NIFP

A)]2 + [T D(NIFB) − T D(NIFP
B )]2

√[T D(A) − T D(AP )]2 + [T D(B) − T D(B P )]2

⎞
⎠ (5)

The greater the difference between the molecules A and B is, the higher the distance
value shows. The distance value is normalized using the invariants of the molecu-
lar graphs A and B. In addition, the distance contribution in the similarity correc-
tion depends on the size and nature of the molecular graphs and the noncommon
subgraphs computed over the distance matrix—T D(AP ), T D(B P ), T D(NIFP

A) and
T D(NIFP

B )—and over the weighted distance matrix— T D(A), T D(B), T D(NIFA)

and T D(NIFB). Each element (i, j) of the weighted distance matrix stores the minimal
pathway length between the atom i and the atom j using interatomic distances relatives
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regarding to the simple bond C–C distance. The nonweighted distances matrix also
stores the minimal pathway lengths between atoms, but considering all the interatomic
distances as 1.00 independently of the bond type. Logically, the weighted matrix led
to better molecular representations. The fact of employing nonweighted distance ma-
trices in addition to the weighted ones increased the structural differentiation achieved
by using only the weighted distance matrices.

2.4 Data analysis and software employed

Approximate similarity (AS) matrices with dimensions 22 by 22 were built using
Expression (2). Considering multivariate regression, the AS matrix is considered as
a set of 22 objects (rows) characterized by 22 variables (columns). Thus, an object
(chemical compound) is described using a series of global variables which accounts
for the approximate similarity between the molecule and a reference compound.

Partial least squares regression (PLSR) [31] was employed as multivariate regres-
sion technique. PLSR reduced the original similarity spaces considering variances of
the predictor and property matrices. PLSR allowed the use of symmetric matrices—
other regression techniques, e.g. multiple linear regression (MLR), requires systems
with more objects than predictors— and different statistical parameters were obtained,
namely: coefficient of determination, standard error in prediction, slope and bias of
the correlation analysis [32,33].

Software for isomorphism extraction, invariant computation and similarity calcula-
tion was developed by authors in C programming language. Regression and validation
methods were implemented using the Matlab Statistics Toolbox [34].

3 Results and discussion

3.1 Study of topological descriptors and outliers

Several AS matrices were built each of which used a given topological invariant for
describing the common and noncommon substructures. For all these AS matrices, full-
cross validation (FCV) processes were carried out and predictive models for the SPPP
inhibitory capacity were obtained (Q2 > 0.60). Wiener and HyperWiener descriptors,
which make use of different distance matrices distributions, led to the best predictions.
While the Wiener invariant consists of the half-sum of all the distance matrix elements,
the HyperWiener descriptor also adds a quadratic term of the distance elements. Thus,
usefulness of each invariant depends on the structural differentiation required for
obtaining predictive QSAR models. In this case, SPPP derivatives only required the
graph representation provided by the Wiener index, and the HyperWiener could have
added a noise component to the similarity space.

Table 1 shows the experimental pI C50 activities for the 22 SPPP compounds and
the predicted values using the best AS-based QSAR model (Wiener descriptor). The
activity values predicted by the previous QSAR method proposed in bibliography are
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Fig. 2 Experimental versus predicted values plot and statistical parameters obtained in full cross validation
process

also given. Statistical parameters obtained were as follows:

Q2 = 0.92, Standard Error in Cross Validation (SECV) = 0.10,

slope = 1.01, intercept = 0.00

Thus, accuracy (low SECV in addition to slope and bias close to 1.00 and 0.00,
respectively) and precision (Q2 > 0.90) were both excellent for the model developed.
Figure 2 shows the lab versus predicted activities plot and its statistical characteri-
zation. It is interesting to remark that it SECV was computed over predicted values
(prediction error).

Considering the T parameter for each one of the 22 SPPP derivatives (computed the
individual residual regarding to the SECV value), compounds 4 and 16 were detected
as outliers. The reason for detecting the compound 4 as an outlier could be the fact of
employing only a compound showing a –(CH2)2– bridge group between the pyrazine
and the –C6H5 substituent. Thus, when the activity of compound 4 was predicted in its
corresponding FCV cycle, modeling of this structural characteristic was not achieved
with the remaining compounds which train the individual model, and therefore, a high
deviation was obtained.

The other outlier detected was the compound 16. As Fig. 1 shows, this SPPP mole-
cule has a –CF3 group attached to the –C6H5 substituent. Possible reasons for the ano-
malous behavior of this compound within the model could lie on the bulky substructure
of the –CF3 group, in addition to its high electronegativity value.

3.2 Analysis of the AS-QSAR equation coefficients

Figure 3 shows the equation coefficients of the QSAR model, built by FCV, for the 22
SPPP compounds. Each coefficient measures the influence of the similarity to the deri-
vative represented by the corresponding variable on the inhibitory capacity: the higher
the absolute value of the coefficient shows, the greater the influence on the activity
presents—if the coefficient has positive sign, the influence will be positive, and vice
versa.

As can be observed in Fig. 3, the lowest coefficient values were those of the com-
pounds 1, 7, 17 and 18. Thus, high similarities to these compounds will produce
low activity values. As expected, these molecules show low activities and common
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Fig. 3 Coefficients of the QSAR model. Each coefficient represents the similarity to each one of the 22
SPPP derivatives

structural characteristics. With the exception of the compound 1, whose structure is
the isomorphism extracted for most of the SPPP derivatives pairs, compounds 7, 17
and 18 presents the –C6H5 group attached to the pyrazine substructure substituted in
para positions by –F, –NO2 and –NH2, respectively.

On other side, SPPP derivatives 8, 9 and 12 showed, as descriptor variables, the
highest QSAR equation coefficients. In these cases, the –C6H5 group has substituents
different of the fluoride (–Cl, –Br) in ortho and meta positions. In addition, other
compounds with high inhibitory capacities also have substituents in the same ortho
and meta positions. Thus, the new SPPP derivatives design should provide compounds
with these substituents position characteristics.

Thus, similarity-based QSAR equations permitted to assess the influence of the
degree similarity on the inhibitory capacity of derivatives and to provide mathematical
support for logical chemical concepts.

4 Conclusions

A high predictive QSAR model for the activity of spirosuccinimide fused tetrahydro-
pyrrolo[1,2-a]pyrazine (SPPP) compounds as inhibitors of the aldose reductase enzyme
has been presented in this work. The QSAR modeling makes use of the approximate
similarity methodology, which uses isomorphic and nonisomorphic data fusion.

Based on the use of topological chemical representations, structure-behavior deve-
lopments characterized by accuracy, precision and robustness were achieved by means
of isomorphic and nonisomorphic data fusion. In spite of obtaining several predictive
models, the optimal spaces outcame from employing weighted and nonweighted dis-
tance matrices and the Wiener descriptor as the topological invariant. Thus, the Wiener
index applied separately to isomorphic and nonisomorphic fragments allowed to model
internal and external substructures.

Results could be reasonably well compared with the previous QSAR approaches for
the SPPP compounds and the interpretation of models should permit to extract some
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interesting structural requirements in order to achieve high inhibitory capacities. The
fact of using graph topological measurements involves simplicity and fastness which
can provide pharmaceutical industries with a powerful tool for predicting and screening
the behavior of new SPPP derivatives.

Acknowledgements We would like to thank the Comisión Interministerial de Ciencia y Tecnología
(CiCyT) and FEDER for their financial support (Project: TIN2006-02071).

References

1. P.F. Kador, Med. Res. Rev. 8, 325–352 (1988)
2. D.R. Tomlinson, E.J. Stevens, L.T. Diemel, Al. Trends Pharmacol. Sci. 15, 293–297 (1994)
3. C. Yabe-Nishimura, Pharmacol. Rev. 50, 21–33 (1999)
4. M. Laasko, Diabetes 48, 937–942 (1998)
5. A.Y.W. Lee, S.S.M. Chung, FASEB 13, 23–30 (1999)
6. O. El-Kabbani, F. Ruiz, C. Darmanin, R.P.T. Chung, Cell. Mol. Life Sci. 61, 750–762 (2004)
7. M. Yamagishi, Y. Yamada, K. Ozaki, M. Asao, R. Shimizu, M. Suzuki, M. Matsumoto, Y. Matsuoka,

K. Matsumoto, J. Med. Chem. 35, 2085–2094 (1992)
8. L. Costantino, G. Rastelli, K. Vescovini, G. Cignarella, P. Vianello, A. Del Corso, M. Cappiello,

U. Mura, D. Barlocco, J. Med. Chem. 39, 4396–4405 (1996)
9. T. Kotani, Y. Nagaki, A. Ishii, Y. Konishi, H. Yago, S. Suehiro, N. Okukado, K. Okamoto, J. Med.

Chem. 40, 684–694 (1997)
10. P. Fresneau, M. Cussac, J.M. Morand, B. Szymonski, D. Tranqui, G. Leclerc, J. Med. Chem. 41,

4706–4715 (1998)
11. L. Costantino, G. Rastelli, M.C. Gamberini, J.A. Vinson, P. Bose, A. Iannone, M. Staffieri, L. Antolini,

A. Del Corso, U. Mura, A. Albasini, J. Med. Chem. 42, 1881–1893 (1999)
12. L. Costantino, G. Rastelli, M.C. Gamberini, M.P. Giovannoni, V.D. Piaz, P. Vianello, D. Barlocco, J.

Med. Chem. 42, 1894–1900 (1999)
13. L. Costantino, A.D. Corso, G. Rastelli, J.M. Petrash, U. Mura, Eur. J. Med. Chem. 36, 697–703 (2001)
14. G. Bruno, L. Costantino, C. Curinga, R. Maccari, F. Monforte, F. Nicolò, R. Ottanà, M.G. Vigorita,

Bioorg. Med. Chem. 10, 1077–1084 (2002)
15. F.D. Settimo, G. Primofiore, A.D. Settimo, C.L. Motta, F. Simorini, E. Novellino, G. Greco, A.

Lavecchia, E. Boldrini, J. Med. Chem. 46, 1419–1428 (2003)
16. I. Nicolaou, C. Zika, V.J. Demopoulos, J. Med. Chem. 47, 2706–2709 (2004)
17. A. Pau, B. Asproni, G. Boatto, G.E. Grella, P.D. Caprariis, L. Costantino, G.A. Pinna, Eur. J. Pharm.

Sci. 21, 545–552 (2004)
18. European Chemicals Bureau. Toxicology and Chemicals Substances. http://ecb.jrc.it/
19. (a) H. Kubinyi, Drug Discov Today 2(11), 457–467 (1997) (b) H. Kubinyi, Drug Discov Today 2(12),

538–546 (1997)
20. H. Van de Waterbeemd (ed.), Structure-Property Correlations in Drug Research (Academic Press,

Austin, TX, 1996)
21. K. Ko, Y. Won, Bioorg. Med. Chem. 13, 1445–1452 (2005)
22. K. Ko, H. Won, Y. Won, Bioorg. Med. Chem. 14, 3090–3097 (2006)
23. R.P. Sheridan, P. Hunt, J.C. Culberson, J. Chem. Inf. Comput. Sci. 46, 180–192 (2006)
24. R.A. Lewis, J. Med. Chem. 48, 1638–1648 (2005)
25. M. Urbano Cuadrado, I. Luque Ruiz, M.A. Gómez-Nieto, A New Quantitative Structure-Property

Relationship Based on Topological Distances on Non-isomorphic Subgraphs, in Lectures Series on
Computer and Computational Sciences: Advances in Computational Methods in Sciences and Engi-
neering (Brill Academic Publisher, 2005), pp. 135–138

26. M. Urbano Cuadrado, I. Luque Ruiz, M.A. Gómez-Nieto, J. Chem. Inf. Model. 46(4), 1678–1686
(2006)

27. M. Urbano Cuadrado, I. Luque Ruiz, M.A. Gómez-Nieto, J. Chem. Inf. Model. 46(5), 2022–2029
(2006)

28. T. Negoro, M. Murata, S. Ueda, B. Fujitani, Y. Ono, A. Kuromiya, M. Komiya, K. Suzuki, J.I.
Matsumoto, J. Med. Chem. 41, 4118–4129 (1998)

123



J Math Chem (2008) 43:1549–1559 1559

29. Chemaxon Ltd. http://www.chemaxon.com/marvin
30. G. Cerruela García, I. Luque Ruiz, M.A. Gómez-Nieto, J. Chem. Inf. Comput. Sci. 44, 30–41 (2004)
31. S. Wold, M. Sjostrom, L. Eriksson, Chemom. Intell. Lab. Syst. 58, 109–130 (2001)
32. S. Wold, L. Eriksson, in statistical Validation of QSAR Results. In Chemometrics Methods in Molecular

Design. ed. by H. van de Waterbeemd (VCH, Weinheim, 1995), pp. 309–318
33. A. Golbraikh, A. Tropsha, J. Mol. Graph. Model. 20, 269–276 (2002)
34. MATLAB, Version 6.5 (R13). Mathworks Inc., 2003; www.mathworks.com

123


	Approximate similarity and QSAR in the study of spirosuccinimide type aldose reductase inhibitors
	Abstract
	Introduction
	Materials and methods
	Chemical structures and biological data
	Isomorphic and nonisomorphic chemical information
	Approximate similarity measurements
	Data analysis and software employed
	Results and discussion
	Study of topological descriptors and outliers
	Analysis of the AS-QSAR equation coefficients
	Conclusions
	Acknowledgements
	References


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (None)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /SyntheticBoldness 1.00
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveEPSInfo true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 150
  /GrayImageDepth -1
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org?)
  /PDFXTrapped /False

  /Description <<
    /ENU <>
    /DEU <>
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [5952.756 8418.897]
>> setpagedevice


